Crystal structure of human L-isoaspartyl methyltransferase.
نویسندگان
چکیده
The enzyme l-isoaspartyl methyltransferase initiates the repair of damaged proteins by recognizing and methylating isomerized and racemized aspartyl residues in aging proteins. The crystal structure of the human enzyme containing a bound S-adenosyl-l-homocysteine cofactor is reported here at a resolution of 2.1 A. A comparison of the human enzyme to homologs from two other species reveals several significant differences among otherwise similar structures. In all three structures, we find that three conserved charged residues are buried in the protein interior near the active site. Electrostatics calculations suggest that these buried charges might make significant contributions to the energetics of binding the charged S-adenosyl-l-methionine cofactor and to catalysis. We suggest a possible structural explanation for the observed differences in reactivity toward the structurally similar l-isoaspartyl and d-aspartyl residues in the human, archael, and eubacterial enzymes. Finally, the human structure reveals that the known genetic polymorphism at residue 119 (Val/Ile) maps to an exposed region away from the active site.
منابع مشابه
Crystal structure of human L-isoaspartyl-O-methyl-transferase with S-adenosyl homocysteine at 1.6-A resolution and modeling of an isoaspartyl-containing peptide at the active site.
Spontaneous formation of isoaspartyl residues (isoAsp) disrupts the structure and function of many normal proteins. Protein isoaspartyl methyltransferase (PIMT) reverts many isoAsp residues to aspartate as a protein repair process. We have determined the crystal structure of human protein isoaspartyl methyltransferase (HPIMT) complexed with adenosyl homocysteine (AdoHcy) to 1.6-A resolution. Th...
متن کاملCrystal structure of a protein repair methyltransferase from Pyrococcus furiosus with its L-isoaspartyl peptide substrate.
Protein L-isoaspartyl (D-aspartyl) methyltransferases (EC 2.1.1.77) are found in almost all organisms. These enzymes catalyze the S-adenosylmethionine (AdoMet)-dependent methylation of isomerized and racemized aspartyl residues in age-damaged proteins as part of an essential protein repair process. Here, we report crystal structures of the repair methyltransferase at resolutions up to 1.2 A fro...
متن کاملNon-repair pathways for minimizing protein isoaspartyl damage in the yeast Saccharomyces cerevisiae.
The spontaneous degradation of asparaginyl and aspartyl residues to isoaspartyl residues is a common type of protein damage in aging organisms. Although the protein-l-isoaspartyl (d-aspartyl) O-methyltransferase (EC 2.1.1.77) can initiate the repair of l-isoaspartyl residues to l-aspartyl residues in most organisms, no gene homolog or enzymatic activity is present in the budding yeast Saccharom...
متن کاملPriming and accelerated ageing affect L-isoaspartyl methyltransferase activity in tomato (Lycopersicon esculentum Mill.) seed
Damage and degradation of cellular proteins is observed during age-induced seed deterioration, LIsoaspartyl protein methyltransferase (EC 2.1.1.77) is an enzyme hypothesized to play a role in limiting and repairing age-induced damage to proteins. Tomato {Lycopersicon esculentum Mill. 'New Yorker') seeds were assayed for changes in L-isoaspartyl methyltransferase activity during accelerated agei...
متن کاملRecognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis.
We provide here the first direct evidence that D-aspartyl residues in peptides are substrates for the L-isoaspartyl/D-aspartyl protein carboxyl methyltransferase (EC 2.1.1.77). We do this by showing that D-aspartic acid beta-methyl ester can be isolated from carboxypeptidase Y digests of enzymatically methylated D-aspartyl-containing synthetic peptides. The specificity of this reaction is suppo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 277 12 شماره
صفحات -
تاریخ انتشار 2002